Scythe Documentation
Release 0.1.1

Materials Data Facility Team, Citrine Informatics

Jan 09, 2023

CONTENTS:

1 Project Goals

1.1~ What Does Scythe Do? e
1.2 What Does Scythe Not Do? e e e e e e e
2 User Guide
2.1 Installing Scythe (forusers) e
2.2 Discovering an eXtraCtor i it e
2.3 SimpleInterface e
24 ClassInterface
2.5 Integrating Scythe into Applications L e e e

3 Contributor Guide

3.1 Setting up development environmento et e e e e e e e e e e e
3.2 Step I: Implement the EXtractor e e e e
3.3 Step 2: Document the Extractor L e
3.4 Step 3: Register the Extractor e e

4 Available Extractors

4.1 Quick Summary L e e e e e e e e
4.2 Detailed Listing oL e e e e e e e e
5 scythe
5.1 scythe.adapters.base L L. e e e e
5.2 scythe.utilsdnterface L.
5.3 scythe.utils.grouping L e e e e e e e e e e
Python Module Index
Index

17
17
17

21
21
22
25

27

29

Scythe Documentation, Release 0.1.1

Scythe is a library of tools that generate summaries of the data contained in scientific data files. The goal of Scythe is to
provide a shared resources of these tool to avoid duplication of effort between the many emerging scientific databases.
Each extractor is designed to generate the sum of all data needed by each of these databases with a uniform API so that
specific projects can write simple adaptors for their needs.

Source Code: https://github.com/materials-data-facility/Scythe

CONTENTS: 1

https://github.com/materials-data-facility/Scythe

Scythe Documentation, Release 0.1.1

2 CONTENTS:

CHAPTER
ONE

PROJECT GOALS

The goal of Scythe is to minimize the amount of code duplication between scientific databases. Many databases rely
on custom software to extract information from scientific files and transform that data into a standardized format.
Automation or analysis software also require extracting information from files. While the data needs of application
vary, they all rely on similar algorithms to extract information from the same types of files. Scythe is designed to be a
shared repository for these algorithms.

The core of Scythe is a collection of “extractors” which each generate simplified, standardized data from a certain
class of files. For example, the ElectronMicroscopyExtractor produces structured data from file types specific to
brands of electron microscopes.

Each extractor does not necessarily generate data in a format needed by any tool. Rather, the extractors are designed
to produce all of the information needed by all projects that utilize the libraries. In this way, the extractors can service
every user without modification.

1.1 What Does Scythe Do?

Scythe is designed to provide the answer to two limited questions:

1. Which files can I parse with a certain tool?
Scythe provides tools for quickly finding files of a certain type

2. What information does a set of files contain?
Scythe provides a library of tools that transform data into a simpler formats

1.2 What Does Scythe Not Do?

There are several questions that are specifically out-of-scope for Scythe:

1. How do I get access to files that I want to parse?
Scythe does not solve the data transfer problem

2. How can I parse large numbers of files reliably?
Scythe is not a distributed workflow engine, but is designed to integrate with one for extracting metadata
from large filesystems.

3. How can I translate data into the schema needed for my application?
The goal of Scythe is to go from opaque to well-documented formats. We recommend implementing sep-
arate “adapter” classes to transform Scythe metadata to your specific requirements.

See our “how to use Scythe” documentation for more detail on how to integrate Scythe into an application that provides
these intentionally-missing features.

user-guide.html#integrating-materialsio-into-applications

Scythe Documentation, Release 0.1.1

4 Chapter 1. Project Goals

CHAPTER
TWO

USER GUIDE

In this part of the guide, we show a simple example of using a Scythe extractor and discuss the full functionality of an
extractor.

2.1 Installing Scythe (for users)

Installing Scythe should be as easy as a single pip command. Assuming you have a version of Python that is 3.8 or
higher, running:

[pip install scythe-extractors }

Should get the basics of Scythe installed. By default however, only a small subset of extractors will be installed (this
is done so you do not need to install all the dependencies of extractors you may never use). To install additional
extractors, you can specify “extras” at install time using the [. . .] syntax for pip. For example, if you want to install
all the extractors bundled with Scythe (and their dependencies), run:

[pip install pip install scythe-extractors[all] }

This will pull in many more packages, but also enable as many extractors as possible. Check the list under [tool.
poetry.extras] in pyproject.toml to see all the options you can specify in the brackets of the pip install
command.

2.2 Discovering an extractor

Scythe uses stevedore to manage a collection of extractors, and has a utility function for listing available extractors:

from scythe.utils.interface import get_available_extractors
print(get_available_extractors())

This snippet will print a dictionary of extractors installed on your system. Both extractors that are part of the Scythe
base package and those defined by other packages will be included in this list.

https://docs.openstack.org/stevedore/latest/index.html

Scythe Documentation, Release 0.1.1

2.3 Simple Interface

The methods in scythe.utils.interface are useful for most applications. As an example, we illustrate the use of
scythe.file.GenericFileExtractor, which is available through the 'generic' extractor plugin:

from scythe.utils.interface import execute_extractor
print (execute_extractor('generic', ['pyproject.toml']))

The above snippet creates the extractor object and runs it on a file named pyproject.toml. Run in the root directory
of the Scythe, it would produce output similar to the following, likely with a different sha512 value if the contents of
that file have changed since this documentation was written:

[{
"data_type": "ASCII text",
"filename": "pyproject.toml",
"length": 2421,
"mime_type": "text/plain”,
"path": "pyproject.toml",
"sha512":
—"a7eb382c4a3e6cf469656453f9ff2e3clac2c02c9c2ba31c3d569a09883e2b2471801c39125daftb7cl3bfcaf9ctfbatbab92a

3]

The other pre-built parsing function provides the ability to run all extractors on all files in a directory:

from scythe.utils.interface import run_all_extractors
gen = run_all_extractors('.")
for record in gen:

print(record)

A third route for using scythe is to employ the get_extractor operation to access a specific extractor, and then use
its class interface (described below):

from scythe.utils.interface import get_extractor
extractor = get_extractor('generic')
gen = extractor.parse_directory('.")
for record in gen:
print (record)

2.3.1 Advanced Usage: Adding Context

The function interface for Scythe supports using “context” and “adapters” to provide additional information Scythe
into Applications <#id1>"_. Here, we describe the purpose of context and how to use it in our interface.

Context is information about the data held in a file that is not contained within the file itself . Examples include
human-friendly descriptions of columns names or which values actually represent a missing measurement in tabular
data file (e.g., CSV files). A limited number of extractors support context and this information can be provided via the
execute_extractor function:

[execute_extractor(‘csv' , 'tests/data/test.csv', context={'na_values': ['N/A']}) }

The types of context information used by an extractor, if any, is described in the documentation for each extractor.

6 Chapter 2. User Guide

extractors.html

Scythe Documentation, Release 0.1.1

The run_all_extractors_on_directory function has several options for providing context to the extractors. These
options include specifying “global context” to be passed to every extractor or adapter and ways of limiting the metadata
to specific extractors. See scythe.utils.interface.run_all_extractors_on_directory() for further details
on the syntax for this command.

Note: Context is still an experimental feature and APIs are subject to change

2.4 Class Interface

The class API of extractors provide access to more detailed features of individual extractors. The functionality of an
extractor is broken into several simple operations.

2.4.1 Initializing an extractor

The first step to using an extractor is to initialize it. Most extractors do not have any options for the initializer, so you
can create them with:

[extractor = Extractor() }

Some extractors require configuration options that define how the extractor runs, such as the location of a non-Python
executable.

2.4.2 Parsing Method

The main operation for any extractor is the data extraction operation: parse.

In most cases, the parse operation takes the path to a file and and returns a summary of the data the file holds:

[metadata = extractor.parse(['/my/file'])]

Some extractors take multiple files that describe the same object (e.g., the input and output files of a simulation) and
use them to generate a single metadata record:

[metadata = extractor.parse(['/my/file.in', '/my/file.out'])]

The grouping method for these extractors provides logic to identify groups of related files.

Some extractors also can use information that is not contained within the file themselves, which can be provided to the
extractor as a “context’:

[metadata = extractor.parse(['/my/filel'], context={'headers': {'temp': 'temperature'}})]

The documentation for the extractor should indicate valid types of context information.

2.4. Class Interface 7

Scythe Documentation, Release 0.1.1

2.4.3 Grouping Files

Extractors also provide the ability to quickly find groups of associated files: group. The group operation takes path
or list of files and, optionally, directories and generates a list of files that should be treated together when parsing:

—file'), (unrelated',)]

extractor.group(['input.file', 'output.file', 'unrelated']) # -> [('input.file', 'output.

2.4.4 Parsing Entire Directories

scythe also provides a utility operation to parse all groups of valid files in a directory:

[metadata = list(extractor.parse_directory('."))]

parse_directory is a generator function, so we use 1ist here to turn the output into a list format.

2.4.5 Attribution Functions

Two functions, citations and implementors, are available to determine who contirbuted a extractor.
implementors returns the list of people who created an extractor, who are likely the points-of-contact for support.
citations indicates if any publications are available that describe the underlying methods and should be reference in
scientific articles.

2.4.6 Full Extractor API

The full API for the extractors are described as a Python abstract class:

class scythe.base.BaseExtractor

Abstract base class for a metadata extractor

This class defines the interface for all extractors in Scythe. Each new extractor must implement the parse(),
version(), and implementors () functions. The group () method should be overridden to generate smart
groups of file (e.g., associating the inputs and outputs to the same calculation) citations () can be used if there
are papers that should be cited if the extractor is used as part of a scientific publication.

See the Scythe Contributor Guide for further details.

identify_files(path: str, context: dict | None = None) — Iterator[Tuple[str]]
Identify all groups of files likely to be compatible with this extractor

Uses the group () function to determine groups of files that should be parsed together.
Parameters
* path (str) — Root of directory to group together
e context (dict) — Context about the files

Yields
([str]) Groups of eligible files

extract_directory(path: str, context: dict | None = None) — Iterator[Tuple[Tuple[str], dict]]

Run extractor on all appropriate files in a directory

Skips files that throw exceptions while parsing

8 Chapter 2. User Guide

contributor-guide.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Scythe Documentation, Release 0.1.1

Parameters
¢ path (str)— Root of directory to extract metadata from
e context (dict) — Context about the files

Yields
([str], dict) — Tuple of the group identity and the metadata unit

abstract extract(group: Ilterable[str], context: dict | None = None) — dict

Extract metadata from a group of files

A group of files is a set of 1 or more files that describe the same object and will be used together to create
a single metadata record.

Parameters
» group ([str]) — A list of one or more files that should be parsed together
e context (dict)— Context about the files

Returns
The parsed results, in JSON-serializable format.

Return type
(dict)

group (files: str | List[str], directories: List[str] | None = None, context: dict | None = None) —
Iterator[Tuple[str, ...]]

Identify a groups of files and directories that should be parsed together
Will create groups using only the files and directories included as input.
The files of files are _all_ files that could be read by this extractor, which may include many false positives.
Parameters
» files (str or [str])-— Listof files to consider grouping
e directories ([str]) — Any directories to consider group as well
e context (dict) — Context about the files

Yields
((str)) — Groups of files

citations() — List[str]

Citation(s) and reference(s) for this extractor

Returns
each element should be a string citation in BibTeX format

Return type
([str])

abstract implementors() — List[str]
List of implementors of the extractor

These people are the points-of-contact for addressing errors or modifying the extractor

Returns
List of implementors in the form “FirstName LastName <email @ provider>”

Return type
([str])

24,

Class Interface 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
mailto:email@provider
https://docs.python.org/3/library/stdtypes.html#str

Scythe Documentation, Release 0.1.1

abstract version() — str

Return the version of the extractor

Returns
Version of the extractor

Return type
(str)

property schema: dict

Schema for the output of the extractor

2.5 Integrating Scythe into Applications

Scythe is designed to create a documented, JSON-format version of scientific files, but these files might not yet be in
a form useful for your application. We recommend an “adapter” approach to post-process these “generic JSON” files
that can actually be used for your application.

2.5.1 BaseAdapter

The BaseAdapter class defines the interface for all adapters.

class scythe.adapters.base.BaseAdapter

Template for tools that transform metadata into a new form

abstract transform(metadata: dict, context: None | dict = None) — Any

Process metadata into a new form
Parameters
e metadata (dict) — Metadata to transform
* context (dict)— Any context information used during transformation

Returns
Metadata in a new form, can be any type of object. None corresponding

check_compatibility (parser: BaseExtractor) — bool
Evaluate whether an adapter is compatible with a certain parser

Parameters
parser (BaseExtractor) — Parser to evaluate

Returns
(bool) Whether this parser is compatible

version() — None | str
Version of the parser that an adapter was created for

Returns

(str) Version of parser this adapter was designed for,
or None if not applicable

Adapters must fulfill a single operation, transform, which renders metadata from one of the Scythe extractors into
a new form. There are no restrictions on the output for this function, except that None indicates that there is no valid
transformation for an object.

10 Chapter 2. User Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Scythe Documentation, Release 0.1.1

The check_compatibility and version method provide a route for marking which versions of an extractor are
compatible with an adapter. scythe uses the version in utility operations to provide warnings to users about when an
adapter is out-of-date.

2.5.2 Using Adapters

The same utility operations described above support using adapters. The execute_extractor function has an argu-
ment, adapter, that takes the name of the adapter as an input and causes the parsing operation to run the adapter after
parsing. The run_all_extractors function also has arguments (e.g., adapter_map) that associate each extractor
with the adapter needed to run after parsing.

As an example, we will demonstrate an adapter that comes packaged with Scythe: scythe.adapters.base.
SerializeAdapter The serialize adapter is registered using stevedore as the name “serialize”. To use it after
all extractors:

from scythe.utils.interface import run_all_extractors
gen = run_all_extractors('.', default_adapter='serialize')

2.5.3 Implementing Adapters
Any new adapters must inherit from the BaseAdapter class defined above. You only need implement the transform
operation.

Once the adapter is implemented, you need to put it in a project that is installable via pip. See [python docs](https:
//docs.python.org/3.7/distutils/setupscript.html) for a detailed tutorial or copy the structure used by the MDF’s adapter
library.

Then, register the adapter with stevedore by adding it as an entry point in your project’s setup.py or pyproject.
toml file. See the stevedore documentation for more detail. We recommend using the same name for a adapter as the
extractor it is designed for so that scythe can auto-detect the adapters associated with each extractor.

2.5.4 Examples of Tools Using Scythe

Materials Data Facility: https://github.com/materials-data-facility/mdf-materialsio-adapters

2.5. Integrating Scythe into Applications 11

https://docs.python.org/3.7/distutils/setupscript.html
https://docs.python.org/3.7/distutils/setupscript.html
https://github.com/materials-data-facility/mdf-materialsio-adapters
https://github.com/materials-data-facility/mdf-materialsio-adapters
https://docs.openstack.org/stevedore/latest/user/tutorial/creating_plugins.html#registering-the-plugins
https://github.com/materials-data-facility/mdf-materialsio-adapters

Scythe Documentation, Release 0.1.1

12 Chapter 2. User Guide

CHAPTER
THREE

CONTRIBUTOR GUIDE

3.1 Setting up development environment

Scythe makes use of the Poetry project to manage dependencies and packaging. To install the latest version of Scythe,
first install poetry following their documentation. Once that’s done, clone/download the Scythe repository locally
from Github. Change into that directory and run poetry install (it would be a good idea to create a new virtual
environment for your project first too, so as to not mix dependencies with your system environment).

By default, only a small subset of extractors will be installed (this is done so that you do not need to install all the
dependencies of extractors you may never use). To install additional extractors, you can specify “extras” at install
time using poetry. Any of the values specified in the [tool.poetry.extras] section of pyproject.toml can be
provided, including all, which will install all bundled extractors and their dependencies. For example:

[poetry install -E all }

Poetry wil create a dedicated virtual environment for the project and the Scythe code will be installed in “editable”
mode, so any changes you make to the code will be reflected when running tests, importing extractors, etc. It will use
the default version of python available. Scythe is currently developed and tested against Python versions 3.8.12, 3.9.12,
and 3.10.4. We recommend using the pyenv project to manage various python versions on your system if this does not
match your system version of Python. It is required to use tox as well (see next paragraph). Make sure you install the
versions specified in the .python-version file by running commands such as pyenv install 3.8.12 etc.

Additionally, the project uses tox to simplify common tasks and to be able to run tests in isolated environments. This
will be installed automatically as a development package when running the poetry install command above. It can
be used to run the test suite with common settings, as well as building the documentation. For example, to run the full
Scythe test suite on all three versions of Python targetd, just run:

[poetry run tox]

To build the HTML documentation (will be placed inside the . /docs/_build/ folder), run:

[poetry run tox -e docs]

For the sake of speed, if you would like to focus your testing on just one Python version, you can temporarily override
the environment list from pyproject.toml with an enviornment variable. For example, to only run the test/coverage
suite on Python 3.8.X, run:

[TOXENV:py38 poetry run tox]

Check out the [tool.tox] section of the pyproject.toml file to view how these tasks are configured, and the tox
documentation on how to add your own custom tasks, if needed.

13

https://python-poetry.org/docs/
https://python-poetry.org/docs/#installation
https://github.com/materials-data-facility/Scythe/
https://github.com/pyenv/pyenv
https://tox.wiki/en/latest/
https://tox.wiki/en/latest/config.html
https://tox.wiki/en/latest/config.html

Scythe Documentation, Release 0.1.1

Finally, Scythe uses flake8 to enforce code styles, which will be run for you automatically when using tox as defined
above. Any code-style errors, such as lines longer than 100 characters, trailing whitespace, etc. will be flagged when
running poetry run tox.

The next part of the Scythe guide details how to add a new extractor to the ecosystem.

3.2 Step 1: Implement the Extractor

Creating a new extractor is accomplished by implementing the BaseExtractor abstract class. If you are new to Materail-
sIO, we recommend reviewing the User Guide first to learn about the available methods of BaseExtractor. Minimally,
you need only implement the extract, version, and implementors operations for a new extractor. Each of these
methods (and any other methods you override) must be stateless, so that running the operation does not change the
behavior of the extractor.

We also have subclasses of BaseExtractor that are useful for common types of extractors:

* BaseSingleFileExtractor: Extractors that only ever evaluate a single file at a time

3.2.1 Class Attributes and Initializer

The BaseExtractor class supports configuration options as Python class attributes. These options are intended to
define the behavior of an extractor for a particular environment (e.g., paths of required executables) or for a particular
application (e.g., turning off unneeded features). We recommend limiting these options to be only JSON-serializable
data types and for all to be defined in the __init__ function to simplify text-based configuration files.

The initializer function should check if an extractor has access to all required external tools, and throw exceptions if
not. For example, an extractor that relies on calling an external command-line tool should check whether the package
is installed. In general, extractors should fail during initialization and not during the parsing operation if the system in
misconfigured.

3.2.2 Implementing extract

The extract method contains the core logic of a Scythe extractor: rendering a summary of a group of data files. We
do not specify any particular schema for the output but we do recommend best practices:

1. Summaries must be JSON-serializable.
Limiting to JSON data types ensures summaries are readable by most software without specia libraries.
JSON documents are also able to be documented easily.

2. Human-readability is desirable.
JSON summaries should be understandable to users without expert-level knowledge of the data. Avoid
unfamiliar acronyms, such as names of variables in a specific simulation code or settings specific to a
certain brand of instrument.

3. Adhere closely to the original format.
If feasible, try to stay close to the original data format of a file or the output of a library used for parsing.
Deviating from already existing formats complicates modifications to an extractor.

4. Always return a dictionary.
If an extractor can return multiple records from a single file group, return the list as an element of the
dictionary. Any metadata that pertains to each of the sub-records should be stored as a distinct element
rather than being duplicated in each sub-record.

We also have a recommendations for the extractor behavior:

14 Chapter 3. Contributor Guide

user-guide.html#extractor-api
user-guide.html#available-methods

Scythe Documentation, Release 0.1.1

1. Avoid configuration options that change only output format.
Extractors can take configuration options that alter the output format, but configurations should be used
sparingly. A good use of configuration would be to disable complex parsing operations if unneeded. A bad
use of configuration would be to change the output to match a different schema. Operations that significantly
alter the form but not the content of a summary should be implemented as adaptors.

2. Consider whether context should be configuration.
Settings that are identical for each file could be better suited as configuration settings than as context.

3.2.3 Implementing group

The group operation finds all sets of files in a user-provided list files and directories that should be parsed together.
Implementing group is optional. Implementing a new group method is required only when the default behavior of
“each file is its own group” (i.e., the extractor only treats files individually) is incorrect.

The group operation should not require access to the content of the files or directories to determine groupings. Being
able to determine file groups via only file names improves performance and allows for determining groups of parsable
files without needing to download them from remote systems.

Files are allowed to appear in more than one group, but we recommend generating only the largest valid group of files
to minimize the same metadata being generated multiple times.

It is important to note that that file groups are specific to an extractor. Groupings of files that are meaningful to one
extractor need not be meaningful to another. For that reason, limit the definition of groups to sets of files that can
be parsed together without consideration to what other information makes the files related (e.g., being in the same
directory).

Another appropriate use of the group operation is to filter out files which are very unlikely to parse correctly. For
example, a PDF extractor could identify only files with a “.pdf” extension. However, we recommend using filtering
sparing to ensure no files are missed.

3.2.4 Implementing citations and implementors

The citation and implementors methods identify additional resources describing an extractor and provide credit
to contributors. implementors is required, as this operation is also used to identify points-of-contact for support
requests.

citation should return a list of BibTeX-format references.

implementors should return a list of people and, optionally, their contract information in the form: “FirstName Last-
Name <email @provider.com>”.

3.2.5 Implementing version

We require using semantic versioning for specifying the version of extractors. As the API of the extractor should remain
unchanged, use versioning to indicate changes in available options or the output schema. The version operation should
return the version of the extractor.

3.2. Step 1: Implement the Extractor 15

mailto:email@provider.com
https://semver.org/

Scythe Documentation, Release 0.1.1

3.3 Step 2: Document the Extractor

The docstring for an extractor must start with a short, one sentence summary of the extractor, which will be used by
our autodocumentation tooling. The rest of the documentation should describe what types of files are compatible, what
context information can be used, and summarize what types of metadata are generated.

Todo: Actually write these descriptors for the available extractors

The Scythe project uses JSON documents as the output for all extractors and JSON Schema to describe the content of
the documents. The BaseExtractor class includes a property, schema, that stores a description of the output format.
We recommend writing your description as a separate file and having the schema property read and output the contents
of this file. See the GenericFileExtractor source code for a example.

3.4 Step 3: Register the Extractor

3.4.1 Preferred Route: Adding the Extractor to Scythe

If your extractor has the same dependencies as existing extractors, add it to the existing module with the same depen-
dencies.

If your extractor has new dependencies, create a new module for your extractor in scythe, and then add the requirements
as anew key in the [tool.poetry.extras] section of pyproject .toml, following the other extractor examples in
that section. Next, add your extractor to docs/source/extractors.rst by adding an .. automodule:: statement
that refers to your new module (again, following the existing pattern).

Scythe uses stevedore to simplify access to the extractors. After implementing and documenting the extractor, add
it to the [tool.poetry.plugins."scythe.extractor"] section of the pyproject.toml file for Scythe. See
stevedore documentation for more information (these docs reference setup.py, but the equivalent can be done via
plugins in pyproject .toml; follow the existing structure if you're unsure, and ask for help from the developers if
you run into issues).

3.4.2 Alternative Route: Including Extractors from Other Libraries

If an extractor would be better suited as part of a different library, you can still register it as a extractor with Scythe by
altering your pyproject.toml file. Add an entry point with the namespace "scythe.extractor" and point to the
class object following the stevedore documentation. Adding the entry point will let Scythe use your extractor if your
library is installed in the same Python environment as Scythe.

Todo: Provide a public listing of scythe-compatible software.

So that people know where to find these external libraries

16 Chapter 3. Contributor Guide

https://json-schema.org/
https://github.com/materials-data-facility/Scythe/blob/master/scythe/file.py
https://docs.openstack.org/stevedore/latest/user/tutorial/creating_plugins.html#registering-the-plugins
https://docs.openstack.org/stevedore/latest/user/tutorial/creating_plugins.html#registering-the-plugins

CHAPTER
FOUR

AVAILABLE EXTRACTORS

These pages detail all of the extractors currently available in Scythe.

4.1 Quick Summary

The extractors that are configured to work with the stevedore plugin are:
* ase — Parse information from atomistic simulation input files using ASE.
* crystal — Extract information about a crystal structure from many types of files.
* csv — Describe the contents of a comma-separated value (CSV) file
* dft — Extract metadata from Density Functional Theory calculation results
* em — Extract metadata specific to electron microscopy.
* filename — Extracts metadata in a filename, according to user-supplied patterns.
* generic — Gather basic file information
* image — Retrieves basic information about an image
* json — Extracts fields in JSON into a user-defined new schema.
* noop — Determine whether files exist, used for debugging
¢ tdb — Extract metadata from a Thermodynamic Database (TBD) file.
» xml — Extracts fields in XML into a user-defined new schema in JSON.

» yaml — Extracts fields in YAML into a user-defined new schema in JSON.

4.2 Detailed Listing

4.2.1 Generic File Extractors

Extractors that work for any kind of file

class scythe.file.GenericFileExtractor (store_path=True, compute_hash=True)
Gather basic file information

Parameters
» store_path (bool) — Whether to record the path of the file

» compute_hash (bool)— Whether to compute the hash of a file

17

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scythe Documentation, Release 0.1.1

4.2.2 Image Extractors

Extractors that read image data

class scythe.image.ImageExtractor

Retrieves basic information about an image

4.2.3 Electron Microscopy Extractors
Extractors that read electron microscopy data of various sorts (images, spectra, spectrum images, etc.) using the Hy-
perSpy package.

class scythe.electron_microscopy.ElectronMicroscopyExtractor
Extract metadata specific to electron microscopy.

This parser handles any file supported by HyperSpy’s I/O capabilities. Extract both the metadata interpreted by
HyperSpy directly, but also any important values we can pick out manually.

For each value (if it is known), return a subdict with two keys: value, containing the actual value of the metadata
parameter, and unit, a string containing a unit name from the QUDT vocabulary. Including a unit is optional,
but highly recommended, if it is known.

The allowed metadata values are controlled by the JSONSchema specification in the schemas/
electron_microscopy. json file.

4.2.4 Atomistic Data Extractors

Extractors related to data files that encode atom-level structure

class scythe.crystal_structure.CrystalStructureExtractor
Extract information about a crystal structure from many types of files.

Uses either ASE or Pymatgen on the back end

class scythe.ase.ASEExtractor

Parse information from atomistic simulation input files using ASE.
ASE can read many file types. These can be found at https://wiki.fysik.dtu.dk/ase/ase/io/io.html
Metadata are generated as ASE JSON DB format: https://wiki.fysik.dtu.dk/ase/ase/db/db.html

scythe.ase.object_hook (dct)
Custom decoder for ASE JSON objects

Does everything except reconstitute the JSON object and also converts numpy arrays to lists
Adapted from ase.io.jsonio

Parameters
dct (dict) — Dictionary to reconstitute to an ASE object

18 Chapter 4. Available Extractors

https://hyperspy.org
https://hyperspy.org
http://www.qudt.org/doc/DOC_VOCAB-UNITS.html
https://wiki.fysik.dtu.dk/ase/ase/io/io.html
https://wiki.fysik.dtu.dk/ase/ase/db/db.html
https://docs.python.org/3/library/stdtypes.html#dict

Scythe Documentation, Release 0.1.1

4.2.5 Calculation Extractors

Extractors that retrieve results from calculations

class scythe.dft.DFTExtractor (quality_report=False)

Extract metadata from Density Functional Theory calculation results
Uses the dfttopif parser to extract metadata from each file
Initialize the extractor

Parameters
quality_report (bool) — Whether to generate a quality report

extract (group: Iterable[str], context: dict | None = None)

Extract metadata from a group of files

A group of files is a set of 1 or more files that describe the same object and will be used together to create
a single metadata record.

Parameters
e group ([str])— A list of one or more files that should be parsed together
¢ context (dict) — Context about the files

Returns
The parsed results, in JSON-serializable format.

Return type
(dict)

class scythe.ase.ASEExtractor

Parse information from atomistic simulation input files using ASE.
ASE can read many file types. These can be found at https://wiki.fysik.dtu.dk/ase/ase/io/io.html
Metadata are generated as ASE JSON DB format: https://wiki.fysik.dtu.dk/ase/ase/db/db.html

scythe.ase.object_hook(dct)
Custom decoder for ASE JSON objects

Does everything except reconstitute the JSON object and also converts numpy arrays to lists
Adapted from ase.io.jsonio

Parameters
dct (dict) — Dictionary to reconstitute to an ASE object

4.2.6 Structured Data Files

Extractors that read data from structured files

class scythe.csv.CSVExtractor (return_records=True, **kwargs)

Describe the contents of a comma-separated value (CSV) file
The context dictionary for the CSV parser includes several fields:
* schema: Dictionary defining the schema for this dataset, following that of FrictionlessIO

* na_values: Any values that should be interpreted as missing

4.2. Detailed Listing 19

https://github.com/CitrineInformatics/pif-dft
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://wiki.fysik.dtu.dk/ase/ase/io/io.html
https://wiki.fysik.dtu.dk/ase/ase/db/db.html
https://docs.python.org/3/library/stdtypes.html#dict

Scythe Documentation, Release 0.1.1

Parameters
return_records (bool) — Whether to return each row in the CSV file

Keyword:
All kwargs as passed to TableSchema’s infer method

citations() — List[str]

Citation(s) and reference(s) for this extractor

Returns
each element should be a string citation in BibTeX format

Return type
([str])

20 Chapter 4. Available Extractors

https://docs.python.org/3/library/functions.html#bool
https://github.com/frictionlessdata/tableschema-py#infer
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER
FIVE

SCYTHE

Documentation for the non-parser functions in scythe.

5.1 scythe.adapters.base

Base classes for adapters

class scythe.adapters.base.BaseAdapter

Template for tools that transform metadata into a new form

check_compatibility (parser: BaseExtractor) — bool

Evaluate whether an adapter is compatible with a certain parser

Parameters
parser (BaseExtractor) — Parser to evaluate

Returns
(bool) Whether this parser is compatible

abstract transform(metadata: dict, context: None | dict = None) — Any

Process metadata into a new form
Parameters
e metadata (dict) — Metadata to transform
* context (dict)— Any context information used during transformation

Returns
Metadata in a new form, can be any type of object. None corresponding

version() — None | str
Version of the parser that an adapter was created for

Returns

(str) Version of parser this adapter was designed for,
or None if not applicable

class scythe.adapters.base.GreedySerializeAdapter

Converts the metadata to a string by serializing with JSON, making some (hopefully) informed choices about
what to do with various types commonly seen, and otherwise reporting that the data type could not be serialized.
May not work in all situations, but should cover a large number of cases.

21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Scythe Documentation, Release 0.1.1

transform(metadata: dict, context=None) — str

Process metadata into a new form
Parameters
e metadata (dict) — Metadata to transform
* context (dict)— Any context information used during transformation

Returns
Metadata in a new form, can be any type of object. None corresponding

class scythe.adapters.base.NOOPAdapter
Adapter that does not alter the output data

Used for testing purposes

transform(metadata: dict, context=None) — dict

Process metadata into a new form
Parameters
e metadata (dict) — Metadata to transform
e context (dict)— Any context information used during transformation

Returns
Metadata in a new form, can be any type of object. None corresponding

class scythe.adapters.base.SerializeAdapter
Converts the metadata to a string by serializing with JSON

transform(metadata: dict, context=None) — str

Process metadata into a new form
Parameters
e metadata (dict) — Metadata to transform
* context (dict)— Any context information used during transformation

Returns
Metadata in a new form, can be any type of object. None corresponding

5.2 scythe.utils.interface

Utilities for working with extractors from other applications

class scythe.utils.interface.ExtractResult(group, extractor, metadata)
Create new instance of ExtractResult(group, extractor, metadata)
extractor
Alias for field number 1
group
Alias for field number 0
metadata
Alias for field number 2

22 Chapter 5.

scythe

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Scythe Documentation, Release 0.1.1

scythe.utils.interface.get_adapter(name: str) — BaseAdapter
Load an adapter

Parameters
name (str) — Name of adapter

Returns
(BaseAdapter) Requested adapter

scythe.utils.interface.get_available_adapters() — dict

Get information on all available adapters

Returns
(dict) Where keys are adapter names and values are descriptions

scythe.utils.interface.get_available_extractors()
Get information about the available extractors

Returns
Descriptions of available extractors

Return type
[dict]
scythe.utils.interface.get_extractor (name: str) — BaseExtractor

Load an extractor object

Parameters
name (str)— Name of extractor

Returns
Requested extractor

scythe.utils.interface.get_extractor_and_adapter_contexts (name, global_context, extractor_context,
adapter_context)

Helper function to update the helper and adapter contexts and the ‘name’
of a extractor/adapter pair
Parameters
* name (str) — adapter/extractor name.
* global_context (dict) — Context of the files, used for every extractor and adapter

» adapter_context (dict) — Context used for adapters. Key is the name of the adapter,
value is the context. The key @all is used to for context used for every adapter

* extractor_context (dict)— Context used for adapters. Key is the name of the extractor,
value is the context. The key @all is used to for context used for every extractor

Returns
extractor_context, rny_adapter context tuple

Return type
(dict, dict)

5.2. scythe.utils.interface 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Scythe Documentation, Release 0.1.1

scythe.utils.interface.run_all_extractors_on_directory(directory: str, global_context=None,
adapter_context: None | dict = None,
extractor_context: None | dict = None,
include_extractors: None | List[str] = None,
exclude_extractors: None | List = None,
adapter_map: None | str | Dict[str, str] =
None, default_adapter: None | str = None)
— Iterator[ExtractResult]

Run all known files on a directory of files
Parameters
» directory (str) — Path to directory to be parsed
* global_context (dict) — Context of the files, used for every extractor and adapter

» adapter_context (dict) — Context used for adapters. Key is the name of the adapter,
value is the context. The key @all is used to for context used for every adapter

* extractor_context (dict)— Context used for adapters. Key is the name of the extractor,
value is the context. The key @all is used to for context used for every extractor

* include_extractors ([str]) — Predefined list of extractors to run. Only these will be
used. Mutually exclusive with exclude_extractors.

* exclude_extractors ([str]) — List of extractors to exclude. Mutually exclusive with
include_extractors.

» adapter_map (str, dict)-Map of extractor name to the desired adapter. Use ‘match’ to
find adapters with the same names

* default_adapter (str)— Adapter to use if no other adapter is defined

Yields
((str), str, dict) Tuple of (1) group of files, (2) name of extractor, (3) metadata

scythe.utils.interface.run_all_extractors_on_group (group, adapter_map=None,
global_context=None, adapter_context: None |
dict = None, extractor_context: None | dict =
None, include_extractors: None | List[str] =
None, exclude_extractors: None | List = None,
default_adapter: None | str = None)

Parse metadata from a file-group and adapt its metadata per a user-supplied adapter_map.

This function is effectively a wrapper to execute_extractor() that enables us to output metadata in the same format
as run_all_extractors_on_directory(), but just on a single file group.

Parameters
» group ([str]) — Paths to group of files to be parsed
* global_context (dict)— Context of the files, used for every extractor and adapter

* adapter_context (dict) — Context used for adapters. Key is the name of the adapter,
value is the context. The key @all is used to for context used for every adapter

* extractor_context (dict)— Context used for adapters. Key is the name of the extractor,
value is the context. The key @all is used to for context used for every extractor

e include_extractors ([str]) — Predefined list of extractors to run. Only these will be
used. Mutually exclusive with exclude_extractors.

24 Chapter 5. scythe

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Scythe Documentation, Release 0.1.1

» exclude_extractors ([str]) — List of extractors to exclude. Mutually exclusive with
include_extractors.

* adapter_map (str, dict)- Map of extractor name to the desired adapter. Use ‘match’ to
find adapters with the same names:

e default_adapter —

Yields
Metadata for a certain

scythe.utils.interface.run_extractor (name, group, context=None, adapter=None)

Invoke a extractor on a certain group of files
Parameters
e name (str)— Name of the extractor
» group ([str]) — Paths to group of files to be parsed
» context (dict)— Context of the files, used in adapter and extractor
* adapter (str)— Name of adapter to use to transform metadata

Returns
Metadata generated by the extractor

Return type
([dict])

5.3 scythe.utils.grouping

Utilities for implementing grouping operations

scythe.utils.grouping.group_by_postfix(files: Ilterable[str], vocabulary: List[str]) — Iterable[Tuple[str,
]

Group files that have a common ending
Finds all filenames that begin with a prefixes from a user-provided vocabulary and end with the same post-fix.

For example, consider a directory that contains files A.1, B.1, A.2, B.2, and C.1. If a user provides a vocabulary
of [‘A’, ‘B’], the parser will return groups (A.1, B.1) and (A.2, B.2). If a user provides a vocabulary of [‘A’, ‘B’,
‘C’], the parser will return groups (A.1, B.1), (A.2, B.2), and (C.1)

See scythe.dft.DFTParser for an example usage.
Parameters
» files ([str]) - List of files to be grouped
e vocabulary ([str]) — List of known starts for the file

Yields
([str]) — Groups of files to be parsed together

scythe.utils.grouping.preprocess_paths(paths: str | Path | List[str] | List[Path]) — List[str]

Transform paths to absolute paths
Designed to be used to simplify grouping logic

Parameters
paths (Union[str, List[str]) - Files and directories to be parsed

5.3. scythe.utils.grouping 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scythe Documentation, Release 0.1.1

Returns
List of paths in standardized form

Return type
(List[str])

26 Chapter 5. scythe

https://docs.python.org/3/library/stdtypes.html#str

scythe.
scythe.
scythe.
scythe.
scythe.
scythe.
scythe.
scythe.
scythe.

adapters.base, 21
crystal_structure, 18
csv, 19

dft, 19
electron_microscopy, 18
file, 17

image, 18
utils.grouping, 25
utils.interface, 22

PYTHON MODULE INDEX

27

Scythe Documentation, Release 0.1.1

28 Python Module Index

B

BaseAdapter (class in scythe.adapters.base), 21
BaseExtractor (class in scythe.base), 8

C

check_compatibility ()
(scythe.adapters.base.BaseAdapter method), 21

citations() (scythe.base.BaseExtractor method), 9

citations() (scythe.csv.CSVExtractor method), 20

CrystalStructureExtractor (class in
scythe.crystal_structure), 18

CSVExtractor (class in scythe.csv), 19

D

DFTExtractor (class in scythe.dft), 19

E

ElectronMicroscopyExtractor
scythe.electron_microscopy), 18

extract() (scythe.base.BaseExtractor method), 9

extract() (scythe.dft. DFTExtractor method), 19

extract_directory() (scythe.base.BaseExtractor
method), 8

extractor (scythe.utils.interface.ExtractResult
tribute), 22

ExtractResult (class in scythe.utils.interface), 22

G

GenericFileExtractor (class in scythe.file), 17
get_adapter () (in module scythe.utils.interface), 22

(class in

at-

get_available_adapters() (in module
scythe.utils.interface), 23
get_available_extractors() (in module

scythe.utils.interface), 23
get_extractor() (in module scythe.utils.interface), 23
get_extractor_and_adapter_contexts() (in mod-
ule scythe.utils.interface), 23
GreedySerializeAdapter
scythe.adapters.base), 21
group (scythe.utils.interface. ExtractResult attribute), 22
group () (scythe.base.BaseExtractor method), 9

(class in

INDEX

group_by_postfix () (in module scythe.utils.grouping),
25

identify_files()
method), 8

ImageExtractor (class in scythe.image), 18

implementors () (scythe.base.BaseExtractor method), 9

M

metadata (scythe.utils.interface.ExtractResult attribute),
22

(scythe.base.BaseExtractor

module
scythe.adapters.base, 21
scythe.crystal_structure, 18
scythe.csv, 19
scythe.dft, 19
scythe.electron_microscopy, 18
scythe.file, 17
scythe.image, 18
scythe.utils.grouping, 25
scythe.utils.interface, 22

N

NOOPAdapter (class in scythe.adapters.base), 22

P

preprocess_paths () (in module scythe.utils.grouping),
25

R

run_all_extractors_on_directory() (in module
scythe.utils.interface), 23

run_all_extractors_on_group()
scythe.utils.interface), 24

run_extractor () (in module scythe.utils.interface), 25

S

schema (scythe.base.BaseEXxtractor property), 10
scythe.adapters.base

module, 21
scythe.crystal_structure

(in module

29

Scythe Documentation, Release 0.1.1

module, 18
scythe.csv
module, 19
scythe.dft
module, 19
scythe.electron_microscopy
module, 18
scythe.file
module, 17
scythe.image
module, 18
scythe.utils.grouping
module, 25
scythe.utils.interface
module, 22
SerializeAdapter (class in scythe.adapters.base), 22

T

transform() (scythe.adapters.base.BaseAdapter
method), 21

transform() (scythe.adapters.base.GreedySerializeAdapter
method), 21

transform() (scythe.adapters.base. NOOPAdapter
method), 22

transform() (scythe.adapters.base.SerializeAdapter
method), 22

\Y

version() (scythe.adapters.base.BaseAdapter method),
21
version() (scythe.base.BaseExtractor method), 9

30

Index

	Project Goals
	What Does Scythe Do?
	What Does Scythe Not Do?

	User Guide
	Installing Scythe (for users)
	Discovering an extractor
	Simple Interface
	Advanced Usage: Adding Context

	Class Interface
	Initializing an extractor
	Parsing Method
	Grouping Files
	Parsing Entire Directories
	Attribution Functions
	Full Extractor API

	Integrating Scythe into Applications
	BaseAdapter
	Using Adapters
	Implementing Adapters
	Examples of Tools Using Scythe

	Contributor Guide
	Setting up development environment
	Step 1: Implement the Extractor
	Class Attributes and Initializer
	Implementing extract
	Implementing group
	Implementing citations and implementors
	Implementing version

	Step 2: Document the Extractor
	Step 3: Register the Extractor
	Preferred Route: Adding the Extractor to Scythe
	Alternative Route: Including Extractors from Other Libraries

	Available Extractors
	Quick Summary
	Detailed Listing
	Generic File Extractors
	Image Extractors
	Electron Microscopy Extractors
	Atomistic Data Extractors
	Calculation Extractors
	Structured Data Files

	scythe
	scythe.adapters.base
	scythe.utils.interface
	scythe.utils.grouping

	Python Module Index
	Index

